Exenatide Sensitizes Insulin-Mediated Whole-Body Glucose Disposal and Promotes Uptake of Exogenous Glucose by the Liver

نویسندگان

  • Dan Zheng
  • Viorica Ionut
  • Vahe Mooradian
  • Darko Stefanovski
  • Richard N. Bergman
چکیده

OBJECTIVE Recent progress suggests that exenatide, a mimetic of glucagon-like peptide-1 (GLP-1), might lower glycemia independent of increased beta-cell response or reduced gastrointestinal motility. We aimed to investigate whether exenatide stimulates glucose turnover directly in insulin-responsive tissues dependent or independent of insulinemia. RESEARCH DESIGN AND METHODS An intraportal glucose infusion clamp was used in dogs to measure glucose turnover to encompass potent activation of the putative glucose/GLP-1 sensor in the porto-hepatic circulation with exenatide. The modified glucose clamp was performed in the presence of postprandial hyperinsulinemia and hyperglycemia with exenatide (20 microg) or saline injected at 0 min. Furthermore, the role of hyperglycemia versus hyperinsulinemia in exenatide-mediated glucose disposal was studied. RESULTS With hyperinsulinemia and hyperglycemia, exenatide produced a significant increase in total glucose turnover by approximately 30%, as indicated by portal glucose infusion rate (saline 15.9 +/- 1.6 vs. exenatide 20.4 +/- 2.1 mg x kg(-1) x min(-1), P < 0.001), resulting from increased whole-body glucose disposal (R(d), approximately 20%) and increased net hepatic uptake of exogenous glucose ( approximately 80%). Reducing systemic hyperglycemia to euglycemia, exenatide still increased total glucose turnover by approximately 20% (saline 13.2 +/- 1.9 vs. exenatide 15.6 +/- 2.1 mg x kg(-1) x min(-1), P < 0.05) in the presence of hyperinsulinemia, accompanied by smaller increments in R(d) (12%) and net hepatic uptake of exogenous glucose (45%). In contrast, reducing hyperinsulinemia to basal levels, exenatide-increased total glucose turnover was completely abolished despite hyperglycemia (saline 2.9 +/- 0.6 vs. exenatide 2.3 +/- 0.3 mg x kg(-1) x min(-1), P = 0.29). CONCLUSIONS Exenatide directly stimulates glucose turnover by enhancing insulin-mediated whole-body glucose disposal and increasing hepatic uptake of exogenous glucose, contributing to its overall action to lower postprandial glucose excursions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exenatide Sensitizes Insulin-mediated Whole-body Glucose Disposal and Limits Exogenous Glucose to Enter the Circulation

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online...

متن کامل

Portal glucose infusion-glucose clamp measures hepatic influence on postprandial systemic glucose appearance as well as whole body glucose disposal.

The full impact of the liver, through both glucose production and uptake, on systemic glucose appearance cannot be readily studied in a classical glucose clamp because hepatic glucose metabolism is regulated not only by portal insulin and glucose levels but also portal glucose delivery (the portal signal). In the present study, we modified the classical glucose clamp by giving exogenous glucose...

متن کامل

Depot-specific regulation of glucose uptake and insulin sensitivity in HIV-lipodystrophy.

Altered fat distribution is associated with insulin resistance in HIV, but little is known about regional glucose metabolism in fat and muscle depots in this patient population. The aim of the present study was to quantify regional fat, muscle, and whole body glucose disposal in HIV-infected men with lipoatrophy. Whole body glucose disposal was determined by hyperinsulinemic clamp technique (80...

متن کامل

In muscle-specific lipoprotein lipase-overexpressing mice, muscle triglyceride content is increased without inhibition of insulin-stimulated whole-body and muscle-specific glucose uptake.

In patients with type 2 diabetes, a strong correlation between accumulation of intramuscular triclycerides (TGs) and insulin resistance has been found. The aim of the present study was to determine whether there is a causal relation between intramuscular TG accumulation and insulin sensitivity. Therefore, in mice with muscle-specific overexpression of human lipoprotein lipase (LPL) and control ...

متن کامل

Glucagon-mediated impairments in hepatic and peripheral tissue nutrient disposal are not aggravated by increased lipid availability.

Glucose, fat, and glucagon availability are increased in diabetes. The normal response of the liver to chronic increases in glucose availability is to adapt to become a marked consumer of glucose. Yet this fails to occur in diabetes. The aim was to determine whether increased glucagon and lipid interact to impair the adaptation to increased glucose availability. Chronically catheterized well co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2009